SOS3003 Applied data analysis for social science Lecture note 09-2009

Erling Berge
Department of sociology and political
science
NTNU

Spring 2010 © Erling Berge 2010 1

Today

Literature

- Hamilton, Lawrence C. 2008. A Low-Tech Guide to Causal Modelling. http://pubpages.unh.edu/~lch/causal2.pdf
- Principal components and factor analysis
 Hamilton Ch 8 p249-282
- Also see:

Winship, Chrisopher, and Stephen L. Morgan 1999 "The Estimation of Causal Effects from Observational Data", Annual Review of Sociology Vol 25: 659-707

Causal analysis

- Experiment
 - Randomized causal impacts ("treatment")
 provide precise causal conclusions about effects
 ("response") if there is significant differences in
 the mean response (effect)
 - Experiments can be impossible to achieve due to
 - · Practical conditions
 - · Economic constraints
 - · Ethical judgements
- Instead one tries to obtain quasi-experiments
 - Using for example regression analysis

Spring 2010 © Erling Berge 2010 3

Model of causal effects Ref.:

- Research using observations utilize concepts from experimental design
 - "Treatment", "Stimulus"
 - "Effect", "Outcome"

Ref.:

Winship, Chrisopher, and Stephen L. Morgan 1999 "The Estimation of Causal Effects from Observational Data", Annual Review of Sociology Vol 25: 659-707

Experiments allocate "cases" randomly to one of two groups:

- TREATMENT (T)
 - with observation
 - before treatment
 - after treatment
- CONTROLL (C)
- with observation
 - before non-treatment

5

after non-treatment

Spring 2010 © Erling Berge 2010

The counterfactual hypothesis for the study of causality

- Individual "i" can a priori be assumed selected for one of two groups
 - Treatment group, T, or control group, C.
- Treatment, t, as well as non-treatment, c, can a priori be given to individuals both in the T- and C-group
- In reality we are able to observe t only in the T-group and c in the C-group

Modelling of causal effects:

The counterfactual hypothesis (1)

- There are for each individual "i" four possible outcomes
 - $-Y_i(c,C)$ or $Y_i(t,C)$; if allocated to a control group
 - $-Y_i(c,T)$ or $Y_i(t,T)$; if allocated to a treatment group
 - Only Y_i(c, given that "i" is a member of C) or
 - Y_i(t, given that "i" is a member of T) can be observed for any particular individual

Spring 2010 © Erling Berge 2010 7

Modelling of causal effects:

The counterfactual hypothesis (2)

More formally one may write the possible outcomes for person no i:

$$\begin{array}{ccc} & & & & & & & & \\ T\text{-group} & & & & & & & & \\ Y^t_{~i} \in T & & & & & & \\ C\text{-group} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Modelling of causal effects: The counterfactual hypothesis (3)

- Then the causal effect for individual i is
- $\delta_i = Y_i(t) Y_i(c)$
- Only one of these two quantities can be observed for any given individual
- This leads to the "counterfactual hypothesis"

Spring 2010 © Erling Berge 2010

The counterfactual hypothesis: concluding

• "The main value of this counterfactual framework is that causal inference can be summarized by a single question: Given that the δ_i cannot be calculated for any individual and therefore that Y_i and Y_i can be observed only on mutually exclusive subsets of the population, what can be inferred about the distribution of the δ_i from an analysis of Y_i and T_i ?" (Winship and Morgan 1999:664)

 Spring 2010
 © Erling Berge 2010
 10

Modelling of causal effects: from individual effects to population averages

- We can observe
 Y_i (c |i∈C), but not Y_i (t |i∈C)
- The problem may be called a problem of missing data
- Instead of individual effects we can estimate average effects for the total population

Spring 2010 © Erling Berge 2010 11

Modelling of causal effects (1)

- Average effects can be estimated, but usually it involves difficulties
- One assumption is that the effect of the treatment will be the same for any given individual independent of which group the individual is allocated to
- · This, however, is not self-evident

 Spring 2010
 © Erling Berge 2010
 12

Modelling of causal effects (2)

The counterfactual hypothesis assumes:

- That changing the treatment group for one individual do not affect the outcome of other individuals (no interaction)
- That treatment in reality can be manipulated (e.g. sex can not be manipulated)

Spring 2010 © Erling Berge 2010 13

Modelling of causal effects (3)

- One problem is that in a sample the process of allocating person no i to a control or treatment group may affect the estimated average effect (the problem of selection)
- In some cases, however, the interesting quantity is the average effect for those who actually receive the treatment

Modelling of causal effects (4)

- It can be shown that there are two sources of bias for the estimates of the average effect
- An established difference between the C- and T- groups
- The treatment works in principle differently for those allocated to the Tgroup compared to those in the C-group
 - To counteract this one has to develop models of how people get into C- and Tgroups (selection models)

Spring 2010 © Erling Berge 2010 15

Modelling of causal effects (5)

- A general class of methods that may be used to estimate causal effects are the regression models
- These are able to "control for" observable differences between the Cand T- groups, but not for unequal response to treatment

Causal modelling

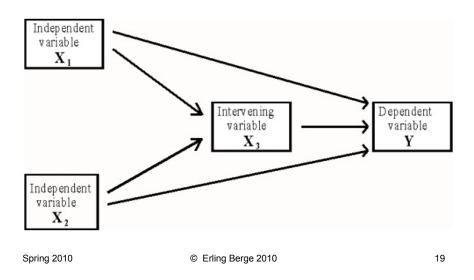
- "path analysis" or "structural equations modelling" go back to the 60ies
- Jöerskog and Sörbom: LISREL
 - Use maximum likelihood to estimate model parameters maximising fit to the variancecovariance matrix
 - Commonly available in statistical packages
 - Covariance structural modelling
 - Structural equation modelling
 - Full information maximum likelihood estimation

© Erling Berge 2010 Spring 2010 17

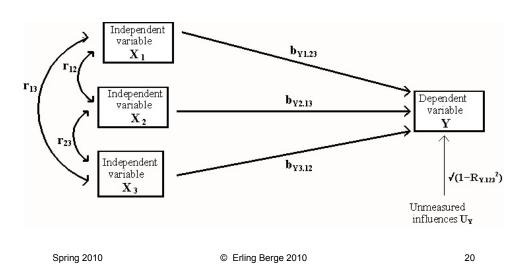
Low-Tech approach

- Uses OLS to do simple versions of the structural equations models
- The key assumption is the causal ordering of variables. In survey data this ordering is supplied by theory
- The causal diagram visualize the order of causation:
 - Causality flows from left to right
 - Intervening variables give rise to indirect effects
 - "reverse causation" creates problems

Low-Tech causal modelling Figure 1



Multiple regression as a causal model Figure 2



Quantities in the diagram

r ₁₂ , r ₁₃ , r ₂₃	Pearson correlations among x-variables
b _{Y1.23} , etc.	Usually a standardized regression coefficient ("beta weight") taken from the regression of Y on X ₁ , and "." means controlled for X ₂ , X ₃
R _{Y.123} ²	Coefficient of determination R^2 from the regression of Y on X_1 , X_2 , X_3
$\sqrt{\{1-R_{Y.123}^2\}}$	Is an estimate of unmeasured influences called error term or disturbance

Spring 2010

© Erling Berge 2010

2

Multiple regression

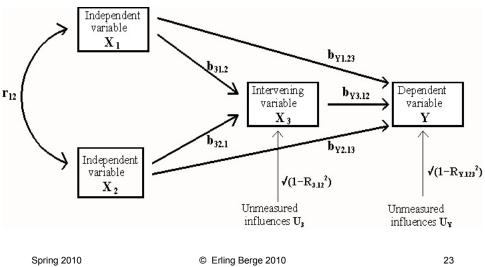
- All assumptions and all problems apply as before
 - Note in particular that error terms must be uncorrelated with included x-variables (all relevant variable are included)
- If some of the X-es are intervening in figure 2 the model is too simple, but it matters only if we are interested in causality

Spring 2010

© Erling Berge 2010

22

Path coefficients Figure 3



New elements in figure 3

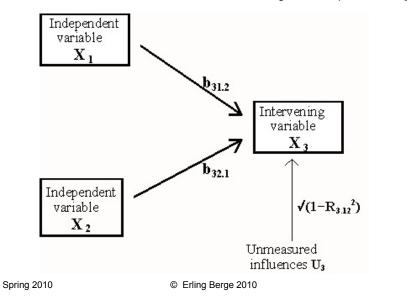
b _{31.2} , b _{32.1}	Standardized regression coefficients ("beta weight") from the regression of X_3 on X_1 controlled for X_2 and from the regression of X_3 on X_2 controlled for X_1
R _{3.12} ²	Coefficient of determination (R^2) from the regression of X_3 on X_1 and X_2
$\sqrt{\{1-R_{3.12}^2\}}$	The error term from the regression of X_3 on X_1 and X_2

The structural model of figure 3

- $\hat{Y} = b_{Y1.23}X_1 + b_{Y2.13}X_2 + b_{Y3.12}X_3$
- $\hat{X}_3 = b_{31.2}X_1 + b_{32.1}X_2$
- In structural equations variables and coefficients are standardized
- That means that variables have an average of 0 and a standard deviation of 1 and that coefficients vary between -1 and +1

Spring 2010 © Erling Berge 2010 25

Figure 5: the regression of X_3 on X_1 and X_2



© Erling Berge 2010

26

Direct, Indirect and Total Effects

- Indirect effects equal the product of coefficients along any series of causal paths that link one variable to another
- Total effects equal the sum of all direct and indirect effects linking two variables

Spring 2010 © Erling Berge 2010 27

Indirect effects as products of path coefficients

•
$$\hat{\mathbf{Y}} = \mathbf{b}_{Y1.23} \mathbf{X}_1 + \mathbf{b}_{Y2.13} \mathbf{X}_2 + \mathbf{b}_{Y3.12} \mathbf{X}_3$$

•
$$\hat{X}_3 = b_{31,2}X_1 + b_{32,1}X_2$$

· Means that we have

•
$$\hat{Y} = b_{Y1.23}X_1 + b_{Y2.13}X_2 + b_{Y3.12}X_3$$

• =
$$b_{Y1,23}X_1 + b_{Y2,13}X_2 + b_{Y3,12}(b_{31,2}X_1 + b_{32,1}X_2)$$

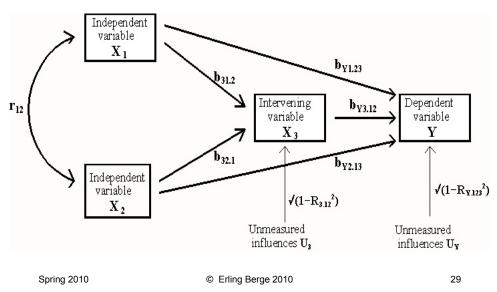
• =
$$b_{Y1.23}X_1 + b_{Y2.13}X_2 + b_{Y3.12}b_{31.2}X_1 + b_{Y3.12}b_{32.1}X_2$$

• =
$$(b_{Y1.23} + b_{Y3.12}b_{31.2})X_1 + (b_{Y2.13} + b_{Y3.12}b_{32.1})X_2$$

· Compare compound coefficients to the diagram

 Spring 2010
 © Erling Berge 2010
 28

Structural model



Path Coefficients

- X₁ to Y: b_{Y1,23} (regression coefficient of Y on X₁, controlling for X2 and X3)
- X_2 to Y: $\mathbf{b_{Y2.13}}$ (regression coefficient of Y on X_2 , controlling for X_1 and X3)
- X_3 to Y: $\mathbf{b_{Y3.12}}$ (regression coefficient of Y on X_3 , controlling for X_1 and X_2)
- X_1 to X_3 : $b_{31.2}$ (regression coefficient of X_3 on X_1 , controlling for X_2)
- X₂ to X₃: b_{32.1} (regression coefficient of X₃ on X₂, controlling for X₁)

Direct effects

X ₁ to Y: b _{Y1.23}	regression coefficient of Y on X1, controlling for X2 and X3
X ₂ to Y: b _{Y2.13}	regression coefficient of Y on X2, controlling for X1 and X3
X ₃ to Y: b _{Y3.12}	regression coefficient of Y on X3, controlling for X1 and X2
X ₁ to X ₃ : b _{31.2}	regression coefficient of X3 on X1, controlling for X2
X ₂ to X ₃ : b _{32.1}	regression coefficient of X3 on X2, controlling for X1

Spring 2010 © Erling Berge 2010 31

Indirect and total effects

Indirect effects	
X_1 to Y, through X_3 :	b _{31.2} × b _{Y3.12}
X_2 to Y, through X_3 :	$b_{32.1} \times b_{Y3.12}$
Total effects	
X ₁ to Y:	$b_{Y1.23} + (b_{31.2} \times b_{Y3.12})$
X ₂ to Y:	$b_{Y2.13} + (b_{32.1} \times b_{Y3.12})$

Additions to multiple regressions

- We learn something new if the indirect effects are large enough to have substantial interest
- More than two steps of causation tends to become very weak
 - -0.3*0.3*0.3 = 0.027
 - 0.3 standard deviation change in causal variables leads to a 0.027 standard deviation change in the dependent variable

Spring 2010 © Erling Berge 2010 33

Variables and measurement

- All interval scale variables used in multiple regression (including non-linear transformed variables and interaction terms) can be included in structural equations models
- But interpretation becomes tricky when variables are complex. Conditional effect plots are very useful
- Robust, quantile, logit, and probit regression should not be used
- Categorical variables should not be used as intervening variables
- Scales or index variables can be used as usual in OLS regression

Concluding on structural equations modelling

- Including factors from factor analysis as explanatory variables make it possible to approximate a LISREL type analysis
- If assumptions are true LISREL will perform a much better and provides more comprehensive estimation, but too often assumptions are not true. Then the low-tech approach has access to the large toolkit of OLS regression for diagnostics and exploratory methods testing basic assumptions and discovering unusual data points
- Simple diagnostic work sometimes yields the most unexpected, interesting and replicable findings from our research

Spring 2010 © Erling Berge 2010 35

Principal components and factor analysis

- Principal components and factor analysis are both methods for data reduction
- They seek underlying dimensions that are able to account for the pattern of variation among a set of observed variables
- Principal components analysis is a transformation of the observed data where the idea is to explain as much as possible of the observed variation with a minimum number of components

Factor analysis

- Estimates coefficients on and variable values of - unobserved variables (Factors) to explain the co-variation among an observed set of variables
- The assumption is that a small set of the unobserved factors are able to explain most of the co-variation
- Hence factor analysis can be used for data reduction. Many variables can be replaced by a few factors

Spring 2010 © Erling Berge 2010 37

Factor analysis

- $Z_k = \ell_{k1}F_1 + \ell_{k2}F_2 + ... + \ell_{ki}F_i + ... + \ell_{kJ}F_J + u_k$ - k = 1, 2, 3, ..., K
- Symbols
 - K observed variables, Z_k; k=1, 2, 3, ..., K
 - J unobserved factors, F_i ; j=1, 2, 3, ..., J where J<K
 - For each variable there is a unique error term, u_k, also called unique factors while the F factors are called common factors
 - For each factor there is a <u>standardized</u> regression coefficient, ℓ_{ki} , also called factor loading; k refers to variable no, j refers to factor no. An index denoting case no has been omitted here.

Correlation of factors

- Factors my be correlated or uncorrelated
 - Uncorrelated: they are then called orthogonal
 - Correlated: they are then called oblique
- · Factors may be rotated
 - Oblique rotations create correlated factors
 - Orthogonal rotations create uncorrelated factors

Spring 2010 © Erling Berge 2010 39

Principal components

- Represents a simple transformation of variables. There are as many principal components as there are variables
- Principal components are uncorrelated
- $Z_k = \ell_{k1}F_1 + \ell_{k2}F_2 + \dots + \ell_{kj}F_j + \dots + \ell_{kK}F_K$
- If the last few principal components explain little variation we can retain J<K components. Thus Principal Components also can be used to reduce data.
- $Z_k = \ell_{k1}F_1 + \ell_{k2}F_2 + \dots + \ell_{kj}F_j + \dots + \ell_{kj}F_j + V_k$ where J<K and the residual v_k has small variance and consist of the discarded principal components

Principal components vs factor analysis

- Principal components analysis attempts to explain the observed variation of the variables
- Factor analysis attempts to explain their intercorrelations
- Use principal components to generate a composite variable that reproduce the maximum variance of observed variables
- Use factor analysis to model relationships between observed variables and unobserved latent variables and to obtain estimates of latent variable values
- The choice between the two is often blurred, to some degree it is a matter of taste

Spring 2010 © Erling Berge 2010 41

The number of principal components

- K variables yield K principal components
- If the first few components account for most of the variation, we can concentrate on them and discard the remaining
- The eigenvalues of the standardized correlation matrix provides a guide here
- Components are ranked according to eigenvalues
- A principal component with an eigenvalue λ <1 accounts for less variance than a single variable
- Thus we discard components with eigenvalues below 1
- Another criterion for keeping components is that each component should have substantive meaning

Eigenvalues and explained variance

- In a covariance matrix the sum of eigenvalues equals the sum of variances.
- In a correlation matrix this = K (the number of variables) since each standardized variable has a variance of 1
- Thus the sum of eigenvalues of the principal components
- $\lambda_1 + \lambda_2 + \lambda_3 + \dots + \lambda_K = K$ and
- λ_j / K = proportion of variance explained by component no j

Spring 2010

© Erling Berge 2010

43

Uniqueness and communality

- If K-J components are discarded and we have only J factors
- $Z_k = \ell_{k1}F_1 + \ell_{k2}F_2 + \dots + \ell_{kj}F_j + \dots + \ell_{kJ}F_J + V_k$
- And an error term v_k
- The variance of the error term is called the uniqueness of the variable
- Communality is the proportion of a variable's variance shared with the components
- Communality = h_k^2 = 1 Uniqueness = $\Sigma_j \lambda_{kj}^2$, j=1,..., J; k = variable number

Spring 2010

© Erling Berge 2010

44

Rotation to simple structure

- The idea is to transform (rotate) the factors so that the loadings on each components make it easier to interpret the meaning of the component
- If the loading are close either to 1 or -1 on one factor and close to 0 on all others the structure is simpler to interpret: we rotate to "simple structure". The rotated factors fit data equally well but are simpler to interpret
- Rotations may be
 - Orthogonal (rotation method typically: varimax)
 - (rotation method typically: oblimin, promax) Oblique

Spring 2010 © Erling Berge 2010

Why rotate?

- Underlying unobserved dimensions may in theory be seen as correlated
- Allowing correlated factors may provide even simpler structure than uncorrelated factors, thus easier to interpret
- All rotations fit data equally well
- Hence the one chosen depends on a series of choices done by the analyst
- Try different methods to see if results differ

SPSS output

- For rotated factor solutions with correlated factors SPSS provides two matrixes for interpretation
- The pattern matrix provides the direct regression of the variables on the factors. The coefficients tells about the <u>direct</u> contribution of a factor in explaining the variance of a variable. Due to the correlations of the factors there are also indirect contributions
- The structure matrix provides the correlations between the variables and the factors

Spring 2010 © Erling Berge 2010 47

Factor scores

- Both principal components and factor analysis may be used to compute composite scores called factor scores
- Recall that variables and factors are assumed to be related like

$$-Z_k = \ell_{k1}F_1 + \ell_{k2}F_2 + \dots + \ell_{kj}F_j + \dots + \ell_{kK}F_K$$

• Then it is possible to find values c_{ij} making

$$-\mathbf{F}_{j} = \mathbf{c}_{1j}Z_{1} + \mathbf{c}_{2j}Z_{2} + \dots + \mathbf{c}_{kj}Z_{j} + \dots + \mathbf{c}_{Kj}Z_{K}$$

The coefficients c_{ij} are the factor score coefficients. They come from the regression of the factor F_i on the variables

Methods for extracting factors

- Principal factor analysis
 - The original correlation matrix R is replaced by R* where the original 1-values of the diagonal has been replaced by estimates of the communality (the shared variance)
 - The factors extracted tries to explain the co-variance or correlations among the variables.
 - The unexplained variance is attributed to a unique factor (error term). The uniqueness may reflect measurement error or something that this variable measure that no other variable measure
 - The most common estimate of communality is R_k^2 the coefficient of determination from the regression of Z_k on all other variables

Spring 2010 © Erling Berge 2010

How many factor should we retain?

- In principal component analysis factors with eigenvalues above 1 is recommended
- In principal factor analysis factors with eigenvalues above 0 is recommended
- Procedure:
 - Extract initial factors or components
 - Rotate to simple structure
 - Decide on how many factors to retain
 - Obtain and use scores for the retained factors, ignoring discarded factors

Concluding (1)

- Principal components
 - transformation of the data, not model based. Appropriate if goal is to compactly express most of the variance of k variables. Minor components (perhaps all except the first) may be discarded and viewed as a residual.
- Factor analysis
 - Estimates parameters of a measurement model with latent (unobserved) variables.

© Erling Berge 2010 Spring 2010 51

Concluding (2)

- Types of factor analysis
 - Principal factoring principal components of a modified correlation matrix R* in which communality estimates (R_k²) replace "1" on the main diagonal
 - Principal factoring without iteration
 - Principal factoring with iteration
 - Maximum likelihood estimation significance tests regarding number of factors and other hypotheses, assuming multivariate normality

Concluding (3)

Rotation

- If we retain more than one factor rotation simplifies structure and improves interpretability
 - Orthogonal rotation (varimax) maximum polarization given uncorrelated factors
 - · Oblique rotation (oblimin, promax) further polarization by permitting interfactor correlations. The results may be more interpretable and more realistic than uncorrelated factors

Scores

 Factor scores can be calculated for use in graphs and further analysis, based on rotated or unrotated factors and principal components

Spring 2010 © Erling Berge 2010 53

Concluding (4)

- Factor analysis is based on correlations and hence as affected by non-linearities and influential cases as in regression
 - Use scatter plots to check for outliers and non-linearities
 - In maximum likelihood estimation this becomes even more important since it assumes multivariate normality making it even less robust than principal factors

Principal components of trust in Malawi

- Survey of 283 households in 18 villages in Malawi, 2007
- There are 8 related questions asked in one group
- Are there 1, 2 or more underlying dimensions shaping the attitudes expressed?
- Analysis of correlations (not co-variances)
- The questions:

Spring 2010 © Erling Berge 2010 55

M3 Would you say you trust all, most, some or just a few people in the following groups? (All=1 – None=5)

а	Your family members	All	Most	Some	Only a few	None	Do not know
b	Your relatives	All	Most	Some	Only a few	None	Do not know
С	Your village	All	Most	Some	Only a few	None	Do not know
d	People from outside the village	All	Most	Some	Only a few	None	Do not know
е	People of same ethnic group	All	Most	Some	Only a few	None	Do not know
f	People from outside ethnic group	All	Most	Some	Only a few	None	Do not know
g	People from same church/mosque	All	Most	Some	Only a few	None	Do not know
h	People <i>not</i> from same church/mosque	All	Most	Some	Only a few	None	Do not know

Trust in Malawi: descriptive

Descriptive Statistics

	Mean	Std. Deviation	Analysis N
M3.a. Trust in family members	1.60	.935	266
M3.b. Trust in relatives	2.12	1.136	266
M3.c. Trust in people in own village	2.69	1.090	266
M3.d. Trust in people outside the village	3.28	1.118	266
M3.e. Trust in people of same ethnic group	2.90	1.082	266
M3.f. Trust in people outside ethnic group	3.26	1.098	266
M3.g. Trust in people from same church/mosque	2.39	1.062	266
M3.h. Trust in people not from same church/mosque	3.02	1.197	266

Spring 2010 © Erling Berge 2010

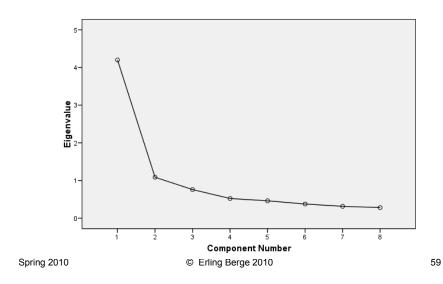
Trust in Malawi: correlation of variables

Correlation Matrix

	M3.a. Trust in family members		M3.c. Trust in people in own village		M3.e. Trust in people of same ethnic group		in people from same	M3.h. Trust in people no from same church/moso ue
M3.a. Trust in family members	1.000	.500	.416	.236	.370	.316	.422	.305
M3.b. Trust in relatives	.500	1.000	.496	.315	.363	.353	.424	.292
M3.c. Trust in people in own village	.416	.496	1.000	.482	.588	.573	.465	.430
M3.d. Trust in people outside the village	.236	.315	.482	1.000	.526	.610	.233	.469
M3.e. Trust in people o same ethnic group	.370	.363	.588	.526	1.000	.702	.504	.643
M3.f. Trust in people outside ethnic group	.316	.353	.573	.610	.702	1.000	.430	.618
M3.g. Trust in people fr same church/mosque	.422	.424	.465	.233	.504	.430	1.000	.536
M3.h. Trust in people n from same church/mosque	.305	.292	.430	.469	.643	.618	.536	1.000

Trust in Malawi: number of factors

Scree Plot



Trust in Malawi: factor/ component matrix

Component Matrix a

	Component			
	1	2		
M3.a. Trust in family members	.588	.586		
M3.b. Trust in relatives	.624	.532		
M3.c. Trust in people in own village	.776	.080		
M3.d. Trust in people outside the village	.675	398		
M3.e. Trust in people of same ethnic group	.832	221		
M3.f. Trust in people outside ethnic group	.816	330		
M3.g. Trust in people from same church/mosque	.690	.265		
M3.h. Trust in people not from same church/mosque	.757	262		

Extraction Method: Principal Component Analysis.

a. 2 components extracted.

Spring 2010 © Erling Berge 2010

60

Trust in Malawi: loadings on orthogonal factors

Rotated component matrix	Unrotated components		Orthogonal varimax	
Variables	F1	F2	F1	F2
M3.a. Trust in family members	.588	.586	.117	.821
M3.b. Trust in relatives	.624	.532	.178	.800
M3.c. Trust in people in own village	.776	.080	.572	.531
M3.d. Trust in people outside the village	.675	398	.779	.089
M3.e. Trust in people of same ethnic group	.832	221	.798	.324
M3.f. Trust in people outside ethnic group	.816	330	.850	.228
M3.g. Trust in people from same church/mosque	.690	.265	.391	.627
M3.h. Trust in people not from same church/mosque	.757	262	.762	.246

Spring 2010 © Erling Berge 2010 61

Trust in Malawi: communalities

Communalities

	Extraction
M3.a. Trust in family members	.689
M3.b. Trust in relatives	.671
M3.c. Trust in people in own village	.609
M3.d. Trust in people outside the village	.614
M3.e. Trust in people of same ethnic group	.741
M3.f. Trust in people outside ethnic group	.774
M3.g. Trust in people from same church/mosque	.546
M3.h. Trust in people not from same church/mosque	.641

Extraction Method: Principal Component Analysis.

Trust in Malawi: explained variance

Total Variance Explained

action Sums of Squared Loaditation Sums of Squared Loa									
Compone	Total	of Varianc	umulative 9	Total	of Varianc	umulative 9			
1	4.199	52.487	52.487	3.071	38.387	38.387			
2	1.087	13.582	66.069	2.215	27.681	66.069			

Extraction Method: Principal Component Analysis.

Spring 2010 © Erling Berge 2010 63

Trust in Malawi: oblique factors pattern matrix

Rotated component matrix	varimax (orthogonal)		oblimin		promax	
Variables	F1	F2	F1	F2	F1	F2
M3.a. Trust in family members	.117	.821	087	.868	145	.901
M3.b. Trust in relatives	.178	.800	014	.826	067	.855
M3.c. Trust in people in own village	.572	.531	.493	.414	.476	.409
M3.d. Trust in people outside the village	.779	.089	.838	133	.864	170
M3.e. Trust in people of same ethnic group	.798	.324	.797	.120	.806	.093
M3.f. Trust in people outside ethnic group	.850	.228	.881	001	.899	036
M3.g. Trust in people from same church/mosque	.391	.627	.268	.573	.237	.582
M3.h. Trust in people not from same church/mosque	.762	.246	.779	.045	.792	.016

Trust in Malawi: oblique factors structure matrix

Rotated component matrix	varimax		oblimin		promax	
Variables	F1	F2	F1	F2	F1	F2
M3.a. Trust in family members	.117	.821	.327	.826	.351	.821
M3.b. Trust in relatives	.178	.800	.380	.819	.403	.817
M3.c. Trust in people in own village	.572	.531	.690	.649	.702	.671
M3.d. Trust in people outside the village	.779	.089	.775	.267	.771	.306
M3.e. Trust in people of same ethnic group	.798	.324	.854	.500	.857	.537
M3.f. Trust in people outside ethnic group	.850	.228	.880	.419	.880	.460
M3.g. Trust in people from same church/mosque	.391	.627	.541	.700	.557	.712
M3.h. Trust in people not from same church/mosque	.762	.246	.800	.416	.801	.452

Spring 2010 © Erling Berge 2010 65

Trust in Malawi: correlation of components

Component Correlation Matrix

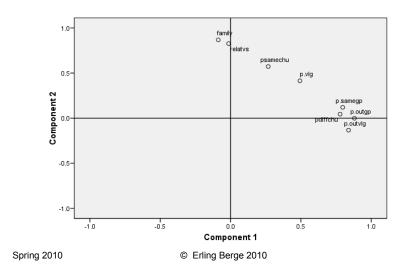
Component	1	2
1	1.000	.477
2	.477	1.000

Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization.

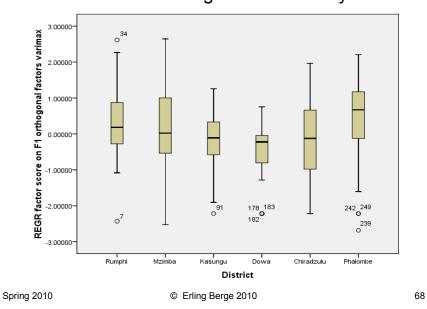
67

Trust in Malawi: variables in component plot

Component Plot in Rotated Space

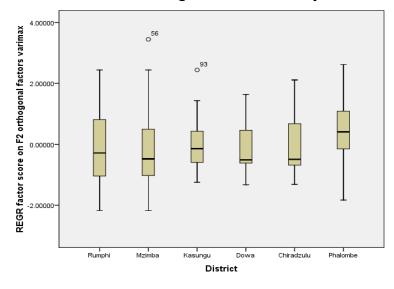


Trust in Malawi: Orthogonal Factor 1 by district



Ref.:

Trust in Malawi: Orthogonal Factor 2 by district



Spring 2010 © Erling Berge 2010 69

Trust in Malawi: Orthogonal factors by district

Case Processing Summary

		Cases					
		Valid		Missing		Total	
	District	N	Percent	N	Percent	N	Percent
REGR factor score on F1 orthogonal factors varimax	Rumphi	43	95.6%	2	4.4%	45	100.0%
	Mzimba	37	82.2%	8	17.8%	45	100.0%
	Kasungu	47	95.9%	2	4.1%	49	100.0%
	Dowa	49	98.0%	1	2.0%	50	100.0%
	Chiradzulu	46	93.9%	3	6.1%	49	100.0%
	Phalombe	44	97.8%	1	2.2%	45	100.0%

Case Processing Summary

		Cases					
		Valid		Missing		Total	
	District	N	Percent	N	Percent	N	Percent
REGR factor score on F2 orthogonal factors varimax	Rumphi	43	95.6%	2	4.4%	45	100.0%
	Mzimba	37	82.2%	8	17.8%	45	100.0%
	Kasungu	47	95.9%	2	4.1%	49	100.0%
	Dowa	49	98.0%	1	2.0%	50	100.0%
	Chiradzulu	46	93.9%	3	6.1%	49	100.0%
	Phalombe	44	97.8%	1	2.2%	45	100.0%